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Abstract

Sense of Agency (SoA) is a core concept related to our
experience as intentional agents in our environment. Explicit
and implicit measures have been used to study SoA. Recent
findings suggest that the most common implicit measure,
namely Temporal Binding (TB), may reflect memory
processes rather than SoA. Here, we implemented two TB
measures and an explicit measure in a novel goal-directed
extended action task to better understand SoA measures.
Participants either watched or produced dot movements to a
target of choice and then estimated the duration between two
tones that played either upon movement completion (TB1, akin
to traditional TB studies) or based on the start and end of
movements (TB2). Participants reported stronger explicit SOA
during active than passive movements. Results from neither TB
version aligned with prediction based on TB-accounts as a
reflection of SoA. We discuss memory-based and scaling
accounts as alternative interpretations for our data.

Keywords: sense of agency; temporal binding; explicit
measures; memory; metacognition;

Introduction

The sense of agency (SoA), i.e., the feeling of control over
our actions and their associated outcomes, is one of the most
fundamental aspects of human experience. The actions we
perform allow us to experience a sense of ownership and
control over the changes our actions bring about in the
environment. For example, if I reach for a glass of water, I
feel a sense of ownership over my actions as I grasp the glass
and drink from it. View this in contrast to accidentally
knocking a glass of water on the floor—I caused the outcome
but might not have controlled it. Our ability to veridically
experience this link between our actions and their outcomes
is a core aspect of child development and has been linked to
several clinical disorders, e.g., schizophrenia. SoA is also
thought to play a role in voluntary movement. Notably, a
better understanding of SoA has important implications for
neurorehabilitation and socially cognizant robotics.

While there is a wealth of research on SoA, it has recently
come to the fore that the most common implicit measure of
SoA (temporal binding (TB), see below), may not reflect
SoA. To address this issue, we introduce and present data on
anovel approach to understanding common measures of SoA
(including TB). We do so by introducing a goal-directed
extended action task paradigm. Before we describe this task,
we will first provide background of the most common
theories of SoA.

Metacognition of Action

What do we know about SoA as a metacognitive
phenomenon? SoA consists of several components
(Gallagher, 2012). It includes both judgments of agency
(JoA) as well as feelings of agency (FoA). The term judgment
of agency refers to the notion of being the one who initiated
an action, whereas the term feeling of agency refers to the

notion of experiencing control over the action (see Haggard
& Tsakiris, 2009; Pacherie, 2008; Synofzik et al., 2008).
These concepts are linked, as people report lower FoA when
they judge that they did not initiate an action as compared to
when they did. For a person to judge that they initiated an
action does not imply that they feel in control over it,
however. For example, one could imagine walking into a
classroom and flipping a light switch to turn on the lights. In
this case, one would probably feel in control over the lights
turning on, unless someone else happened to simultaneously
flip another light switch while they entered the classroom
through another door (Silver et al., 2021). Thus, the link
between initiating an action and experiencing SoA over its
effect is sometimes ambiguous. Becoming aware of these
ambiguities may influence SoA after action completion (i.e.,
postdictively).

While SoA is a core psychological phenomenon, it is not
straightforward to understand or measure. Predictive and
postdictive accounts have been developed for how people
experience SoA. The predictive account (e.g., Blakemore et
al., 2002; Haggard, 2005; Tsakiris et al., 2006) postulates that
SoA arises from the match between the predicted and actual
sensory consequences of an action. SoA then increases as this
match gets stronger.

The postdictive account (e.g., Hoerl et al, 2020) is most
clearly represented by the theory of apparent mental
causation. Whereas the predictive account establishes SoA
dynamically during the action, the postdictive account claims
that SoA is established after the action is completed by
evaluating the extent to which three criteria are met — namely
priority, consistency, and exclusivity. The light switch
example above forms a straightforward way of illustrating
these criteria. Priority dictates that a thought needs to precede
an action (i.e., the thought of turning on the lights).
Consistency dictates that the thought needs to be consistent
with the action outcome (i.e., the lights turning on).
Exclusivity dictates that no alternative causes for the action
are perceived or known (i.e., realizing whether someone else
flipped a light switch or not). Any reduction of these criteria
then lowers SoA.

There is broad consensus that the predictive and postdictive
accounts are complementary rather than conflicting in nature.
In fact, the Cue Integration Theory integrates predictive and
postdictive aspects of SoA based on Bayesian mechanisms
(Legaspi & Toyoizumi, 2019; Moore & Fletcher, 2012;
Synofzik et al., 2013). According to this theory, the
derivation of SoA arises based on a weighting of multiple
cues. These cues could be sensorimotor cues or other
predictive and postdictive cues.



Measuring SoA Implicitly: Temporal Binding
Interestingly, SoA may not just be reactive to the integration
of predicted and actual signals but may also modulate this
integration. Evidence for this assertion stems from the
phenomenon of temporal binding (or action-effect binding).
Temporal binding (TB) is the most considered implicit
measure of SoA. TB refers to the observation that one’s own
actions and action effects are bound together in time, i.e., a
subjective compression of the time interval between the
action (e.g., pressing a button) and its effect (e.g., hearing a
tone; Haggard et al., 2002). To be precise, actions people
perform are perceived later in time than they objectively
occur, and action effects are perceived earlier in time than
they objectively occur. In contrast, passively produced action
effects as well as action effects produced by others are
temporally separated from the actions that produced them. To
emphasize the link to intentionality, TB is sometimes referred
to as intentional binding (Haggard, 2017).

TB effects have been widely replicated and are frequently
conceptualized as an implicit reflection of SoA (Hughes et
al., 2013; Moore & Obhi, 2012). To date, accounts of TB
have implicated sensorimotor mechanisms (Haggard et al.,
2002), cognitive-level inferences about causality (Buehner &
Humphreys, 2009; Hoerl et al., 2020), or a combination of
these cues (Moore et al., 2009). TB may also be a specific
example of a more general process of causal binding across
time and space rather than being specifically indicative of
intentionality. When seen as a form of Bayesian predictive
processing, the notion is that time estimates of actions and
effects are based on a weighted average of all relevant
sources of information, where the weighting is done by the
estimated reliability of each information source (e.g., Suzuki
et al., 2019). In this processing, top-down perceptual
predictions and bottom-up sensory prediction errors together
feed into SoA. Considering SoA to arise from this process is
different from the traditional TB account, as it does not
require postulations about intentionality. Thus, it is important
to carefully examine how TB relates to SoA.

This last point is of critical importance because recent
findings cast doubt on whether TB forms an implicit
reflection of SoA, or if so, to what extent it does. There are
at least two shortcomings in the work on TB as a measure of
SoA. One is that 7B tasks typically do not involve a clear goal
or an extended action, such as reaching for and grabbing a
coffee cup (but see Kumar & Srinivasan, 2014, for an
alternative task). Instead, they center around the somewhat
arbitrary production of tones through keypresses. A second
and more serious concern is that it has recently been shown
that TB effects may be accounted for through a regression-
to-the-mean pattern commonly observed as an effect of
memory, rather than SoA (e.g., Saad, Musolino, & Hemmer,
2022). The TB task is inherently a memory task (recall of
time intervals after producing them), and the behavioral
patterns are indistinguishable from performance (specifically
regression to the mean) in episodic memory. Thus, it is
possible that TB effects do not reflect sensorimotor

mechanisms or SoA. This possibility is also consistent with
Vierordt’s law (Vierordt, 1868).

Measuring SoA Explicitly: Rating Scales

While the most common implicit measure for SoA is TB,
explicit measures of SoA involve conscious reflection and
self-report. In most studies that use an explicit measure of
SoA, participants are asked to rate the extent to which they
felt in control over a preceding action on some continuous
scale. While explicit rating scales come with inherent
challenges (such as response biases, etc.), they have been
shown to be sensitive to objective changes in control across
different conditions in a way that one would expect. For
example, van der Wel (2015) showed in a joint action task
that explicit SoA ratings varied systematically with the
actor’s role in the action. If explicit ratings and implicit
measures both measure SoA, then they should provide a
converging picture of how SoA works. Unfortunately,
however, it should be noted that explicit ratings and temporal
binding effect have repeatedly been shown to be dissociable
(e.g., Barlas & Obhi, 2014; Dewey & Knoblich, 2014; Pfister
et al., 2021; Saito et al., 2015, but also see Makwana &
Srinivasan, 2017). This suggests that TB and explicit ratings
are tracking different cognitive processes, raising the
question of which measure reflects SoA more clearly.

A Novel Task

Here, we aimed to address concerns raised above about
measures of SoA by implementing TB and explicit measures
in a novel task. First, we replaced the single button press
common in TB studies with a goal-directed extended action
task. The logic here is that more complex actions should be
more sensitive to differences in SoA. Second, we modified
the TB task to include two different versions; the first version
(TBI in Figure 1) is most like what happens in regular TB
tasks, except that rather than a single button press we asked
participants to choose between two possible targets and then
move a dot displayed on a screen to that target through a
sequence of button presses (with movement speed varying
across conditions). Arrival at the target then caused a first
tone (like the single button press in standard TB tasks), which
is followed by a second tone at varying time intervals.
Participants then completed an interval estimation task (i.e.,
they estimated the duration between the tones on a slider
scale). We included both an active and passive condition. In
the active condition, participants moved the dot. In the
passive condition, participants watched the dot move to the
target. We included these two conditions because they are

Figure 1. Overview of our experimental task. Participants
first entered the number shown in the target of their choice.
TB1 and TB2 are our implicit measures, see text.



common in standard TB paradigms. Participants also
provided an explicit SoA rating after each block of 10 trials.

The second version of the TB task (TB2 in Figure 1) used
the same task (including experimenter-controlled movement
speed variations), except that starting the dot movement
caused the first tone, and arrival at the target caused the
second tone. Participants then again estimated the interval
between the two tones. In other words, the time between
tones was the same as the time it took to move the dot to the
target. Participants also provided explicit ratings after each
block of 10 trials.

This new version (TB2) is arguably much more interesting
than standard TB tasks, as the interval duration is now under
the participants’ control. The task itself is an extended goal-
directed action more akin to reaching for a glass of water,
instead of a single button press resulting in an arbitrary tone.
While the interval estimation task is still a recall task that
happens after action completion, the action effect of
relevance here is directly linked to the specifics of the actions
(e.g., trajectory length, movement speed, and duration) and
should be more revealing in terms of SoA.

Experiment 1

We provided a broad overview of our task and conditions
above but provide further experimental detail here. Again,
our novel experimental paradigm targeted the link between
TBI1, TB2, explicit ratings, and SoA. We tested 21
participants. Completion of the experiment took 75 minutes.
Participants first completed a consent form and provided
basic information such as handedness and neurological
status. They were then seated behind a standard desktop
computer (Dell Optiplex 7010 with a 22-inch monitor). We
ran the practice and experiment through custom-written
Matlab scripts using PsychToolbox (Brainard, 1997).

Practice Trials

Participants first completed 12 practice trials (3 trials for each
of our four conditions; TB1/TB2 crossed with active/passive
control of the dot). Each block of three trials within the
practice portion first showed a screen that provided
instructions for the specific version of the upcoming task (i.e.,
TB1/TB2 Active/Passive).

Each trial started with a presentation of two targets that
varied in their location (targets labeled 1 and 8 in Figure 1 are
examples). There were four possible target locations, one in
each quadrant of the screen (i.e., top-left/right and bottom-
left/right). We randomized which target combination was
presented across trials. We also implemented small variations
in coordinates along the x and y axes to ensure that
participants had to adjust their steering slightly across
different trials with the same target quadrant. The targets
showed a random number between 1 and 9 in them. Once
participants saw the two targets for a trial, they first indicated
which target they would move to by entering the number
corresponding to the target of their choice on a keyboard.
After a 1000 ms delay, the trial then started and participants
either moved (Active condition) or watched (Passive
condition) the dot move to the target (details below). Once

the dot reached the target and the two tones had played,
participants then saw the next screen with a slider scale.
Participants estimated the duration of the time interval
between the tones by moving the index on the slider scale.
Their estimate of milliseconds duration was displayed above
the slider scale. The scale ranged from 0 to 1000 ms. Once
they reached the value corresponding to their estimate, they
submitted the estimate by pressing the spacebar. We ensured
that the initial position of the index was randomized and
needed to be changed before participants could submit their
interval estimate. Participants received feedback on the
accuracy of their duration estimate and the actual duration
was shown on the screen after estimate submission (feedback
was not provided during the experimental trials). After the 12
practice trials, participants were shown an example screen of
the explicit rating scale they would complete after each of 10
experimental trials (details below). They then continued with
the experimental trials.

Experimental Trials

Participants completed four blocks of 90 experimental trials
per condition (360 trials in total). We counterbalanced the
order of blocks across participants.

TB1 Active/Passive
During TB1 blocks, participants either moved (active) or
watched movements of (passive) a dot from the start location
in the center of the screen to their chosen target. In the active
condition, participants moved the dot by using the direction
keys on the keyboard. Movements varied with three levels of
speed, such that there was a slow, medium, and fast condition
within active and passive blocks (30 trials per speed). For
active trials, speeds corresponded to 12, 17, and 22 pixels per
button press. For passive trials, speeds corresponded to 22,
28, and 34 pixels per unit time. These speeds were based on
pilot testing to ensure a feeling of control for each speed in
the active condition and based on approximating movement
intervals between ~300 and 700 ms in the passive condition.
Once the dot reached the target, this caused the first tone to
play immediately (i.e., no temporal delay relative to the end
of the action). We added this tone to the sensorimotor
information participants got from ending their action (in
active trials) and the visual effect of reaching the target on the
screen to make the active and passive condition as similar as
possible, except for the difference in actively acting. The first
tone was followed by one of three intervals (300, 500, or
700ms, 30 trials each, randomized within a condition block)
and then another tone. The participant then provided their
duration estimate for the interval between the two tones using
the slider scale described above.

TB2 Active/Passive

Trials in TB2 blocks were the same as TB1 blocks, except
that the start of the dot movement caused the first tone (again,
for the same reason as provided above) and the arrival of the
dot at the target caused the second tone. This implies, in the
active condition, that participants controlled the interval
durations themselves.



As a preview of the results, it should be noted that while
duration estimates in the passive condition were similar to
TB1 (as the interval was under experimental control), it was
possible for participants to generate interval durations (i.e.,
for movements to take longer) beyond 1000 ms in the active
condition. This implies that the slider scale range was
technically not sufficiently wide for these trials, and that it
was not a priori possible to design the scale to cover the
correct width. We planned to address this issue in our
analyses, by considering the provided responses for these
trials relative to their absolute duration values, as well as
relative to the movement speed condition (i.e., slow, medium,
or fast dot movements).

Explicit Ratings of SoA

In each block, participants also provided an explicit SoA
rating after each 10 trials. They did so by entering on the
keyboard a numerical response between 1 and 9 to the
prompt: “To what extent did you feel in control during the
past 10 trials?” A scale from 1 to 9 was displayed below this
prompt, with 1 labelled as (“Not at all”) and 9 as
(“Completely”).

Results

Explicit Ratings
We first analyzed the explicit ratings with a 2 (TB1/TB2) x 2
(Active/Passive) repeated-measures ANOVA. Figure 2
shows the results. The results indicated a main effect for
Active (M = 6.30, SE = 0.29) vs Passive (M = 5.51, SE =
0.33), F(1,19)=7.28, p <.05. The results did not show a main
effect of TB1/TB2, p > .10. While the difference between the
active and passive condition was numerically greater for TB2
versus TB1 trials, the interaction between TB1/TB2 and
Active/Passive did not reach significance, p > .05. A
Bayesian analysis confirmed that the model with
Active/Passive as a factor was 4.64 times more likely than the
null and 2.76 times more likely than a model with TB version
* Active/Passive. In sum, participants reported a stronger
SoA when they controlled the dot movements than when they
watched the dot move. This finding suggests that our
Active/Passive manipulation meaningfully tapped into
changes in SoA.
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Figure 2. Explicit SoA ratings as a function of condition.

Implicit TB Measures

One of our main objectives was to better understand TB
measures in the context of goal-directed actions that were
more extended in time than a single button press. We
incorporated TB1 as a version that is closer to traditional TB
studies, as arrival at the target (like a single button press)
started the interval and a second tone (after 300/500/700 ms)
ended the interval to be estimated. In this version, interval
duration was under full experimental control for active (TB1
Active) and passive (TB1 Passive) trials (as the tones did not
depend on the produced movement). We also included our
novel TB2 task, in which tones corresponded to the start and
end of the goal-directed movements. In the passive condition
(TB2 Passive), interval duration was also under experimental
control (as we simulated movement trajectories that then
controlled the dot movement). We controlled movement
duration by feeding these trajectories with different gains
(resulting in fast/medium/slow dot movements) to create
different interval durations. In the active condition (TB2
Active), we also varied the gain to create fast/medium/slow
dot movement conditions, but it is important to note that
interval duration was not under experimental control. Instead,
it depended on the participants’ movements in that case. For
this reason, we report our results for each TB version
separately below.

TB1: Binding for Tones after Movement Completion

Our first analysis focused on Bias for TB1 as a function of
Active/Passive and Interval Duration (300, 500, or 700 ms).
We started with this analysis because TB1 was most like
standard TB studies that use button presses.

To calculate TB, we first calculated a measure of bias for
each trial. We did so by taking the interval duration estimate
a participant provided in a trial and subtracting the actual
duration between the tones from this value. Positive resulting
values thus indicated overestimation (or repulsion in TB
terms) of the duration between tones, and negative values
indicated underestimation (or binding). For each of the
following analyses, we removed outlier values if Bias fell
outside of the mean + 2 STDs for a given participant within a
given condition (so relative to the 90 trials per condition). We
applied a Greenhouse-Geisser correction to the degrees of
freedom for violations of the sphericity assumption.
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Figure 3. Bias as a function of Active/Passive and Interval
Duration for TB1 trials.



The 2 (Active/Passive) x 3 (Interval Duration) repeated-
measures ANOVA indicated a main effect for Interval
Duration (F(1.04, 19.74) = 45.22, p < .001), but not for
Active/Passive, p > .10. The interaction also did not reach
significance, p > .10. As can be seen in Figure 3, mean Bias
was positive for the 300 ms interval (M = 131.75, SE =
27.66), close to zero for the 500 ms interval (M = 10.79, SE
= 16.04), and negative for the 700 ms interval (M = -114.83,
SE =21.42). A Bayesian analysis indicated that a model with
just interval duration was 1.56 times more likely than a model
with interval duration and Active/Passive, and at least five
times more likely than any other model.

This result is consistent with previous findings in the TB
literature — namely a regression effect and both compression
(at 700ms) and repulsion (at 300ms). However, this result is
not consistent with predictions from theories of TB which
would predict compression for all time intervals, and a
difference in degree of compression between active and
passive.

TB2: Binding for Tones during Movement Completion

For TB2, we calculated Bias in two different ways; First, we
considered Bias for TB2 Active and Passive relative to the
minimum possible movement duration based on the
experimenter-controlled movement speed (i.c., gain). By this,
we mean that we determined how long it would take to move
the dot from the start location to the target if there was no
deviation from the straightest possible path and the
participants did not pause anywhere along the movement
trajectory. For TB2 Passive, this was identical to the actual
interval duration they judged (as the dot movements were
simulated at different gains and the interval duration was
therefore under experimental control).

Figure 4 shows the results relative to the minimum possible
duration based on dot movement speed. We then analyzed
Bias for TB2 by conducting a 2 (Active/Passive) x 3
(Movement Speed: Slow/Medium/Fast) repeated-measures
ANOVA (which is identical to how we analyzed it for TB1,
except that we used Movement Speed instead of Interval
Duration). The results revealed a main effect of Movement
Speed (F(1.11, 21.12) = 33.12, p < .001), such that the fast
(M=65.51,SE =23.37) and medium (M =52.92, SE =19.26)
movement speed resulted in positive bias, and the low
movement speed resulted in negative bias (M = -42.64, SE =
18.46). The results also indicated a main effect (F(1, 19) =
17.40, p < .001) of Active (M = 77.32, SE = 26.01) versus
Passive (M = -26.79, SE = 18.25). These effects were
qualified by a significant interaction between Active/Passive
and Movement Speed, F(1.383, 26.28) = 12.06, p < .001,
such that there was more positive bias for active than passive
trials at fast and medium movement speeds, whereas bias did
not differ significantly at slow speeds. A Bayesian analysis
confirmed that a model with interval duration,
Active/Passive, and their interaction term was over seven-
hundred times more likely than any other model.

Second, we considered TB2 Active trials on their own. The
analysis for TB2 we just presented used minimum possible
movement durations based on movements straight to the
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target without any temporal delays. However, participants
often deviated from this path and did not move continuously.
As aresult, the movement durations in TB2 Active could (and
often did) exceed the maximum range on the slider scale.

To get a better sense of bias as a function of actual interval
durations between the tones during TB2 Active, we
calculated two measures. First, we calculated the proportion
of cases for which participants generated movement (and thus
tone interval) duration that exceeded the maximum of 1000
ms on the slider scale. This was the case for 44.81%, 45.56%,
and 57.78% of trials for fast, medium, or slow movement
speeds, respectively. Interestingly, however, we also
calculated the proportion of cases for which the interval
estimates participants provided was at the maximum of the
range of the slider scale (i.e., 1000 ms). If participants
considered the estimation task in an absolute way, then 1000
ms would be the most reasonable response when the actual
interval duration exceeded this value. We observed, however,
that participants responded with 1000 ms on 26.67%, 7.00%,
and 3.67% of trials for fast, medium, and slow speeds,
respectively. As these values are substantially lower than the
proportion of actual durations exceeding 1000 ms, this
suggests that participants judged the durations for TB2
Active in a relative way. They likely did so relative to the
width of the slider scale rather than in actual movement
durations.

Even though movement durations often exceeded the
maximum value on the slider scale, we could calculate bias
based on the actual movement durations participants
accomplished. To do so, it is useful to consider median bias
(median values better account for outliers and for the non-
normal distributions of movement times here) as a function
of dot movement speed (as movement durations varied with
dot movement speed). The median bias for each movement
speed was strongly negative (Median = -783.43 for fast
speeds, Median = -683.86 for medium speeds, and Median =
-749.64 for slow speeds). These values further indicate that
participants rescaled their responses to the width of the slider
scale.

In sum, for TB2 we found the same pattern of regression to
the mean (with a negative slope) as we found for TBI.
Although we did find a difference between active and passive
this should be interpreted with some caution, as the active
trial movements tended to exceed the response scale, and thus
result in larger bias.



Discussion

Here, we introduced a novel paradigm aimed to address
several concerns about standard SoA tasks; 1) we used more
extended actions than a button press, 2) we introduced two
versions of a TB task, with participants controlling the time
interval between tones in one (TB2) but not the other (TB1),
and 3) we obtained explicit ratings for the TB tasks and
active/passive conditions.

First, several methodological points should be made about
our novel task for studying SoA. Our experimental setup
differed from most TB studies as we included a goal-directed
action task that was extended in time. By this, we mean that
most TB studies use a single button press that participants
press when they feel the urge to do so in the active condition.
This results in a tone that plays after some interval duration,
and they then estimate the interval. In passive conditions,
they typically observe the same task and hear a first tone at
the time of the button press and another tone some interval
later (e.g., Saad et al., 2022).

Our paradigm differs in several important ways. One is that
participants chose one of two targets rather than pressing a
single key to generate a tone. They chose the target in our
passive conditions as well, such that they indicated the target
and the dot then moved to that target 3 seconds later. Thus,
participants had some level of control in our passive
conditions, albeit much reduced and with a substantial delay
compared to our active conditions. Second, our participants
did not just hit a key once in the active condition, but
completed a sequence of button presses in a goal-directed
manner. As such, our task involved more extensive and
continuous control than typical TB studies. In addition,
participants controlled the first tone but not the second tone
for the TB1 Active condition, and they controlled both tones
and the interval between them for TB2 Active. In terms of
task structure, then, one would expect TB2 Active to be more
reflective of SoA than TB1 would be.

This is exactly what we found. Our explicit SoA ratings
showed sensitivity to the objective amount of control over the
actions, as active conditions resulted in higher SoA ratings
than passive conditions. This was particularly the case for
TB2 Active (although the interaction was not significant).
These results suggest that, indeed, giving participants control
over the timing of both tones (and the resulting interval
duration between them) results in a stronger SoA.

When we considered bias (i.e., the difference between
estimated and actual interval durations), our results showed
two important patterns across TB1 and TB2. First, bias did
not systematically change as a function of active or passive
control in a trial. This finding is problematic for SoA
accounts of TB, as they would predict more compression of
interval durations for active versus passive trials. For
example, Weller et al. (2020) hypothesized that TB would be
weaker (less compression) for trials where participants did
not perform an action (i.e., passive trials) relative to trials
where they did perform an action (active trials).

Second, bias changed as a function of interval duration
(TB1) and movement speed (TB2). While this pattern has

repeatedly been observed in TB data (see Saad et al., 2022),
it is not predicted by SoA account of TB. Importantly,
overestimation (or repulsion between the action and
outcome) should only occur for non-intentional actions - for
example a finger twitch caused by transcranial magnetic
stimulation (Haggard 2002). However, we found over-
estimation (repulsion) for 300ms intervals for both active and
passive trial for TB1 and overestimation for active trials for
TB2. It is worth noting that the Weller et al. (2020) data also
illustrates this pattern of repulsion at shorter intervals.

How then could one account for these results instead? One
possibility is that the TB data from interval estimation
paradigms show regression-to-the-mean. As we indicated in
the introduction, such an account (e.g., Saad, Musolino, &
Hemmer, 2023) can successfully simulate TB data, such as
those by Weller et al. (2020). The core notion for this account
is that the mean of the range of intervals used induces
regression-to-the-mean for the short (300 ms) and long (700
ms) intervals. This then results exactly in the positive bias
and negative bias observed at those intervals (regardless of
whether it concerns active or passive trials). It is in our case
remarkable to see that even our results for TB2 Active show
some indications of a regression-to-the-mean pattern, despite
the fact that the actual interval durations in many cases
exceeded the range of the scale. Thus, participants rescaled
their responses relative to interval durations across trials and
relative to the width of the slider scale. This pattern would be
expected based on a memory account or a scaling account,
but not based on a SoA account of TB.

While we believe that our novel goal-directed task is a
substantial improvement over standard TB button press tasks,
our TB findings failed to show TB2 to be more reflective of
SoA than TBI1. In fact, our results failed to show any
systematic relationship between the objective amount of
control in our task and TB measures. This observation raises
further doubt in terms of the usefulness of TB as an implicit
measure of SOA.
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